Category Archives: Solar power

Summiting Table Top 10MAR18

http://www.peakbagger.com/climber/ascent.aspx?aid=937449

4375′ elevation – clean prominence: 2333′ – isolation: 31.3 mi

GPS log available at peakbagger link above.

Time-lapse video of drive off pavement

Kind of clandestine wireless communications site – off-grid

From the parking lot, Woolsey’s in-between the two saguaros. There was one other vehicle in the lot.

Trail register.

Timber at the top of the ascent trail. This is the SE end of the mesa.

A solar powered radio facility! And all camo’ed out.

While I do not know its purpose or owning agency, it definitely appears to be some sort of relay site, with the cheesy, wire omni antenna (even with an antenna BNC connector, who’d have thunk?), perhaps monitoring VHF high-band transmitters around the peak and relaying messages/signals from them on some UHF frequency using the directional Yagi antenna in the green radome.

Amazing that the panels are not damaged or missing.

The equipment enclosure. Must have batteries and the two radios inside.

The antenna connector at the bottom of the case. Note the green ground wire, so someone working on this has some fleeting idea of the correct insulation color for ground. However, it’s interesting that no critter has chewed through the insulation.

Honestly, I’d be so embarrassed to hoist an antenna as crappy looking as the VHF high-band omni on the right. And what’s worse, the connector used there is a BNC, definitely not rated for outdoor environments.

From the trail-top timber post, looking at the high point of Table Top. There is a very deep gulley/draw between there and here and the trail to the peak is around the east side of the mesa.

As I get closer to the true peak, a shot back toward the SE end of Table Top – the radio equipment and trail-top timber are at the right side of the ridge.

Finally, the benchmark is achieved. It’s been sprinkling lightly for the past hour.

The peak register is hidden near the benchmark. Signed in.

From the top, came back down retracing the path up.

Arrived at the truck right around sunset, by the time I made it to I-8 it was well after 1900.

No CBP or DEA observed. I’m sure that they were observing me, though %^)

Summiting Newman Peak 11MAR18

http://www.peakbagger.com/climber/ascent.aspx?aid=937700

~4500′ elevation – clean prominence: 2500′ – isolation: 24.5 mi

GPS log available at peakbagger link above.

Time-lapse video of drive off pavement

Wireless communications site – off-grid

At the trailhead around 1000. Cloud cover promised a cool day for a hike.

Looking down the main canyon back toward the CAP Tucson extension (the curved line in the middle-foreground). Trailhead is just about where the canal touches the right canyon slope.

Now in the narrow slot that climbs abruptly out of the main canyon.

A handy, helpful bit of guidance for someone who’s vertical-orientation challenged.

Continuing up the slot, view is opening up as clouds break up. Can see at least 100 miles. Rock towers abound.

Atop slot, great views. The hogback-shaped peak in the distance is Table Top, which I’d summited the day before.

While it can’t be seen in this photo, my white truck is naked-eye visible at the trailhead, just to the right of the bridge over the canal.

There really is an end to this climb! Newman radio site in view from below.

Benchmark and peak register.

Again.

That little bump in the center middleground is Picacho Peak. Kinda small from here. Also, the trains were very hearable when they blew their horns.

In far left, Catalina Mountains and Mt Lemmon. In far far center, Baboquivari. A frickin’ gorgeous day for a climb.

More or less east from the site.

Towers.

More towers. And remember to smile, ’cause you’re on camera!

Towers bristling with radomed-microwave dishes.

Another view.

Want to lease space at the site? Call the number.

This power pole is the top end of the line down the side of the mountain. Only single-phase power, anyone know what voltage level?

A shot of the hump at the southernmost part of the main Picacho range, with Picacho Peak in the left background and the freeway easily visible.

Final shot of radio stuff. I promise.

View to the NW, with the Sierra Estrella in the left background, and Camelback even visible (but not in this scaled-down photo).

End of the trip, just on the east side of the CAP Tucson extension. Not a single person seen. Very isolated. Back to vehicle around 1600, and out to pavement and I-10 about 45 minutes later.

volt/amp/watt/energy meters

Got another two of the inexpensive volt/amp/watt/energy meters from mfreelaa on eBay. These are pretty nice, especially for the $12 each including shipping.

I put two of them in series to see how well each tracked the other. There should be a very small drop in voltage for the second on in series as opposed to the first. That does appear to be the case.

The unit under test is pulling approximately 1-1/4 amps at 12 volts. Assuming these ammeters use 100 A/75 mV shunts (since the meters without built in shunts do the same and it’d be easier to keep them all the same) this would imply that the second meter should read about 0.001 volts lower than the first. However, the display precision is only 0.01 A so it’s not practical to see the difference with this small load.

After two hours now, both meters are showing 50 w-h, I’ll have to wait longer to see if they diverge from one another at all. The voltage (refreshed once per second) is generally within 0.02 volts, which is 0.15% agreement. The current reading is looser, maybe 0.2%. The power reading is quite close, but one would expect that the power reading comes from the multiplication of the v and i values. The energy reading is the time cumulative sum of all the power measurements.

Next project is to measure the efficiency of my new MPPT solar battery charger. Just need to have a sunny day!

UPDATE:

Here it is the next morning and the DUT has now pulled a total of either 261 or 262 W-h, depending on the meter read. That’s still pretty good internal consistency between meters, well under 1% difference.

So, relatively speaking, these meters are pretty consistent in their performance. Perhaps one of these days I’ll set up a calibrated load to get a better handle on the absolute accuracy. But for now, just knowing that the meters are consistent allows me to do the solar MPPT charger testing.

Update on the rooftop amp

Last time we visited the roof, the amp followed by the FM BCB notch filter was now in the die-cast enclosure, but not actually attached to anything.  Now it finally has a home, at least for now, on the tripod leg. It required a visit to Artie’s Ace Hardware in Phoenix at Tatum and Thunderbird, which until about 8 hours ago was unknown to me as a purveyor of a near infinite number of different kinds of metric fastener! Only 4 miles away, it’s a treasure to know that I can get an M4x8 mm pan head screw even late in the afternoon.

The metric hardware was required to install the steel mounting ears on the die-cast enclosure; those mounting ears accept the muffler clamps that hold the whole thing to the leg of the tripod. Later on this winter I’ll bend up some 0.032 Al sheet to act as a sun shield and remount the box on the north leg with the shield to keep it cooler during the summer. I still need to do something permanent about the power for the amp, it’s currently the solar power setup I made a couple weeks ago.

Left is input, right is output. Runs on any voltage up to about 32 vdc and down to about 7 vdc. The internal dc-dc converter keeps the amp supplied with an even 5.0 volts.

With this amp in place, my stack’o-scanners is just bangin’ along. I’ve got great reception, and no FM BCB interference. And, there’s space in the enclosure for a future Arduino or Raspberry Pi, as well as the necessary network connection.

Next step on the rooftop LNA setup

This past weekend I finally started building the ultimate case to house the LNA and FM BCB filter for the rooftop multireceiver project.

Last night I did the final bit of wiring, installed a DC-DC buck converter to take +12 vdc and knock it down to 5.0 vdc.

Here’s some pics of the project.

The two separate die-cast enclosures are the LNA (lower) and the FM BCB notch filter (upper). There’s a LM2596 DC-DC converter in the lower left, and a weathertight Ethernet connection in the center-right wall. All external RF connectors are N. All internal connectors are TNC. All coax is RG316 double-shielded. I used an Ethernet connection to get power to the box and to allow the future addition of either an Arduino or an Raspberry Pi for telemetry purposes.

The overall enclosure with installed components. Got this particular enclosure for about $22 delivered – someone in Santa Maria CA didn’t want it. Was missing the base plate upon which I mounted all the components – fortunately, I had a piece of Al in the garage that was a near-perfect fit! Would have cost nearly $70 new.

The left N connector is the antenna input, the right N is the assembly output to the shack. The Ethernet connector is for future expansion and dc power.

Installed on the roof temporarily (will be mounted on the tripod to right ultimately) with power supplied by batteries in the Tupperware container.

The batteries (Eneloop AA x 10) are charged with a newly modified solar panel install. Again, over the weekend I cut some Al extrusions to replace the old way I’d attached a single 5 w solar panel, now it supports two 5 w panels for a total of 10 w. This almost guarantees sufficient charge for long winter nights.

In addition, the box mounted on the tripod already had a PoE Ethernet connection from the main rooftop unit. I use that 12.6 volt PoE  through a single 1N4001 rectifier to source power to the LNA box when the solar panels can’t provide enough charge to keep the batteries up. I want to add some telemetry (through a future Arduino or similar on the roof) to measure voltages, temperatures, etc.

 

One weird trick for making the amp behave

Alright. Things are looking much better again. Moved the LNA to its rightful position just 2 m of LMR-195 behind the antenna. Put the FM BCB band stop filter behind the LNA. Since I’m not sending dc up the coax right now, and since the BCB stop filter is in the way anyway, I bit the bullet and built myself a quick and dirty solar charging battery supply for the LNA!

5 w solar panel, purchased a decade ago from Harbor Freight; 8 NiMH AA cells in a series holder; LM2596 buck converter to reduce the battery voltage to 5.0 v; a Tupperware container to hold the batteries and converter. Impressive, no? %^) Let’s see how it survives the night.

Here’s the new block diagram – note the PCR-1000 is on one leg of the first splitter, so it should have no more than about 4 dB additional loss than when directly connected to the coax from the roof.

001 – 100 MHz, w/LNA, w/filter, w/o-3dB-splitter:

001 – 100 MHz, w/LNA, w/filter, w-3dB-splitter:

Here, the added loss from the splitter is apparent from DC to 80 MHz or so. It apparently doesn’t pass low frequencies well at all. Since the antenna is not rated that low anyway, it’s good to get rid of additional interfering signal…

100 – 200 MHz, w/LNA, w/filter, w/o-3dB-splitter:

100 – 200 MHz, w/LNA, w/filter, w-3dB-splitter:

It seems that the splitter has greater than 3 dB additional loss until up around 140 MHz. The aviation band (118 – 136 MHz) is about 7 dB worse than without the splitter. But that’s it. No other weirdness. I can live with this.

Am much more satisfied now. LNA is directly behind antenna. Have a new experiment to see how solar battery charging works out.